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Integrated Sensing and Processing Phase II:
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—–
Part Two

—–
Construction of Coded Waveforms: Benke Approximation Schemes for

High-performance Code Design

Paolo Emilio Barbano & Ronald R. Coifman
Yale University

Harry Schmitt
Raytheon Company

November 17, 2005

Abstract

We introduce a new mathematical design methodology for families
of codes, suitable for different applications in Radar and Communi-
cations. The techniques are derived from Mulitiresolution Harmonic
Analysis as well as a general result of Benke [2], regarding Rudin-
Shapiro Polynomials. Some explicit estimates for the performance of
the algorithms are also given.

Motivation and Background
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Since the classic work of Golomb [5], numerous mathematical techniques
have been devoleped for the generation of code families with high auto- and
cross-correlation performance. With few exceptions though (e.g. [3], [1]),
researchers in the field have been interested in the developement of the alge-
braic aspect of the theory of code design. The goal of the present paper is to
demostrate how analytical techniques can provide higher flexibility to build
different requirements into the algorithms. In order to achive this, we propose
here some techniques which make extensive use of tools from Mulitiresolu-
tion Harmonic Analysis as well as a general result of Benke ([2]) regarding
the fundamental construction of Rudin-Shapiro Polynomials. More specifi-
cally, we consider codes and code-families as finite approximants of bases in
infinite-dimentional function spaces (e.g. L2([0, 1]) and L2(R)). An approxi-
mation scheme is exhibited with the desired asymptotic properties. We then
obtain a variety of new code generation algorithms and provide some explicit
estimates for their performance.
The paper is therefore naturally divided in three parts: a first part, contain-
ing a short review of relevant results, the second, providing statements and
proofs of the main theorems, and a third one, with numerical results a short
discussion of future work.

1 Algebraic and Anlaytic Code Design

To motivate our approach to the design problem of coding sequences, we will
follow the historical development of the subject through the theory of Shift
Register Sequences. Solomon Golomb’s classic text was our guide in this [5].
Let’s begin with some preliminaries.

1.1 Shift Register Sequences

Linear shift registers are very important for the algebraic theory of error-
correcting codes. In a shift register (SR), eventually, a sequence will repeat.
This is because for a binary SR sequence, there are only 2r possible states
(either on or off, for each tube). So, a repetition occurs in the first 2r states.
However, we can improve on that bound, since if we have a state of all 0’s,
the shift register will continue producing 0’s, which means its period is just
1. So, the period of a binary shift register is at most 2r − 1.
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Definition A sequence generated by an r-tube shift register will be said to
have maximum length if its period is p = 2r − 1.

Lemma 1.1 Any r inputs and r outputs of a maximum length r-tube shift
register sequence completely determine all of the outputs.

Proof Consider r inputs {a1, a2, . . . , ar} and r outputs {b1, b2, . . . , br}.
Then,

b1 ≡ c1ar ⊕ c2ar−1 ⊕ · · · ⊕ cra1 (mod2)

b2 ≡ c1b1 ⊕ c2ar ⊕ · · · ⊕ cra2 (mod2)
...

br ≡ c1br−1 ⊕ c2br−2 ⊕ · · · ⊕ crar (mod2)

So, we want to find the recursion coefficients, {c1, c2, . . . , cr}. Hence, in
matrix form this system becomes:

b1

b2
...
br

 =


ar ar−1 · · · a1

b1 ar · · · a2
...

...
. . .

...
br−1 br−2 · · · ar




c1

c2
...
cr


Hence, 

c1

c2
...
cr

 =


ar ar−1 · · · a1

b1 ar · · · a2
...

...
. . .

...
br−1 br−2 · · · ar


−1

b1

b2
...
br


if the inverse exists.

Assume that it does not. Then, there is a row such that it is a Z2 multiple
of another row. Hence, it is either equal to that row or is a row of 0’s.
Say it is the latter. So, say the k-th row is all 0’s. If k 6= 1, then

b1 = · · · = bk−1 = bk = ar = · · · = ak = 0.

But, this means that
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bk+1 = c1bk ⊕ · · · ⊕ ckb1 ⊕ ck+1ar ⊕ · · · ⊕ crak+1 = 0c1 ⊕ · · · ⊕ 0cr = 0.

In the same manner, we see that all the bk are 0, meaning that we have
a blank tape, contradicting that the shift register has maximum length. If
k = 1, then all the ai are 0, meaning that all the inputs are 0. This implies
that all the outputs are 0, which is again a contradiction.

Now, say that there is a row equal to another row. Let the j-th row equal
the k + j-th row. Then, it can be seen that the elements of the sequence:
{a1, a2, . . . , ar, b1, b2, . . . , br} repeat every k elements. Hence, the sequence
has period k, contradicting that it is of maximum length, since k < r < 2r−1.

So, the matrix is invertible. Hence, we can solve for c1, . . . , cr. Now, construct
the matrix:

C =


c1 1 0 · · · 0
c2 0 1 · · · 0
...

...
...

. . .
...

cr 0 0 · · · 1


Then,

(
anan+1 · · · an+r

)


c1 1 0 · · · 0
c2 0 1 · · · 0
...

...
...

. . .
...

cr 0 0 · · · 1

 =
(

an+r+1an+r+2 · · · an+2r

)

for all n. Hence, this matrix yields the entire output.

Remark To see that the general case (for Zp) is also true, we use the same
argument, only this time, we assume that some row is a Zp multiple of
another. So, say that ~vj is the j-th and ~vk+j is the k + j-th row. Then,
~vj ≡ d~vk+j (mod p). So, we see that after every k outputs, the next k outputs
are d times the previous set of k outputs. Now, by Fermat’s Little Theorem,
dp−1 ≡ 1 (mod p). This means that after k(p − 1) places, the sequence
repeats. But, k(p − 1) < pr − 1. Hence, the sequence is not of maximum
length. This is a contradiction. Hence, the rows are linearly independent
and the rest of the argument from above follows.
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In a variety of engineering applications, there arises a need to have ”random”
sequences. Since a computer is a finite state machine, true randomness can
not be produced on it. Hence, there is a need to produce sequences that
appear random. A good model for binary random sequences, is flipping a
fair coin. From statistics, there are certain things one would expect from
such a model:

• The number of +1’s (heads) is about the same as the number of −1’s
(tails).

• Short runs (consecutive streaks of heads or tails) are more likely to
occur than long runs. Precisely, half the runs have length 1, one fourth
have length 2, one eighth have length 3, etc.

• There is also a certain property about the autocorrelation of such se-
quences. Autocorrelation measures how similar a sequence is to a shift
of itself. One would expect that the autocorrelation peaks at no shift
(being identical to itself), and is smaller for positive shifts.

The algebraic definition of a random sequence, which in engineering is called
noise, is then:

Definition We say that a binary shift register sequence, A = {a1, a2, . . .} of
period p is a pseudo-noise sequence if:

1.

|
p∑

n=1

an| ≤ 1

2. For every run of length k, there are two runs of length k − 1

3. The cyclic autocorrelation function α has the property:

pα(A)(τ) =

p∑
n=1

anan+τ =

{
p if τ = 0

Ω if 0 < τ < p

The three randomness postulates all reflect the model of randomness de-
scribed above. The third postulate says that the cyclic autocorrelation func-
tion is two valued. This comes from the fact that all shift register sequences
are periodic. It turns out that all maximum-length shift registers satisfy the
three postulates. The proof of this fact is not hard, but is beyond the scope
of the present discussion and may be found in Golomb’s text.
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2 Crosscorrelation and Autocorrelation Prop-

erties

After the introductory study of SR sequences, we proceeded to look at Dilip
Sarwate’s 1979 paper Crosscorrelation and Autocorrelation of Sequences [6].
This provides a good feel for some basic analytical aspects of the project.

Let X be a family of K complex sequences of period N . For sequences,
u, v ∈ X, the periodic crosscorrelation function γ(u, v)(·) is defined as:

γ(u, v)(l) =
N−1∑
i=0

uivi+l

and the periodic autocorrelation function α(u)(·) is defined as:

α(u)(l) =
N−1∑
i=0

uiui+l

We now prove a technical lemma:

Lemma 2.1 Let u, v be two complex sequences of length N . Then,

N−1∑
l=0

|γ(u, v)(l)|2 =
N−1∑
l=0

α(u)(l)α(v)(l)
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Proof

N−1∑
l=0

|γ(u, v)(l)|2 =
N−1∑
l=0

γ(u, v)(l)γ(u, v)(l)

=
N−1∑
l=0

(N−1∑
i=0

uivi+l

)(
N−1∑
j=0

ujvj+l

)
=

N−1∑
l=0

N−1∑
i=0

N−1∑
j=0

uivi+lujvj+l

=
N−1∑
i=0

N−1∑
j=0

N−1∑
l=0

uivi+lujvj+l

=
N−1∑
i=0

N−1∑
j=0

uiuj

N−1∑
l=0

vi+lvj+l

Since the sequences are periodic with period N , we can work modulo N . So,
letting m = j − i and k = i + l, we notice that:

N−1∑
l=0

|γ(u, v)(l)|2 =
N−1∑
i=0

N−1∑
j=0

uiuj

N−1∑
l=0

vi+lvj+l

=
N−1∑
i=0

N−1∑
m=0

uiui+m

N−1∑
k=0

vkvk+m

=
N−1∑
m=0

(N−1∑
i=0

uiui+m

)(
N−1∑
k=0

vkvk+m

)
=

N−1∑
m=0

α(u)(m)α(v)(m).

We are now ready to state the main result of Sarwate’s paper. Define the
following two numbers A and Γ:

Γ = max {|γ(u, v)(l)| : u, v ∈ X, u 6= v, 0 ≤ l ≤ N − 1}
A = max {|α(u)(l)| : u ∈ X, 0 < l ≤ N − 1}
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Theorem 2.2 (Sarwate, 1979) For any set X of K sequences satisfying
α(u)(0) = N for all u ∈ X, the following holds:(

Γ2

N

)
+

N − 1

N(K − 1)

(
A2

N

)
≥ 1.

Proof For all u, v ∈ X,

∑
u∈X

∑
v∈X

u 6=v

N−1∑
l=0

|γ(u, v)(l)|2 +
∑
u∈X

N−1∑
l=0

|α(u)(l)|2

=
∑
u∈X

∑
v∈X

N−1∑
l=0

|γ(u, v)(l)|2

=
∑
u∈X

∑
v∈X

N−1∑
l=0

α(u)(l)α(v)(l) (by Lemma 2.1)

=
N−1∑
l=0

(∑
u∈X

α(u)(l)

)(∑
v∈X

α(v)(l)

)
=

N−1∑
l=0

|
∑
u∈X

α(u)(l)|2

=

(∑
u∈X

α(u)(0)

)2

+
N−1∑
l=1

|
∑
u∈X

α(u)(l)|2

= K2N2 +
N−1∑
l=1

|
∑
u∈X

α(u)(l)|2

since there are K elements in X and for each, α(u)(0) = N by assumption.
Now, for the first term on the left hand side, there are K(K−1) different pairs
of sequences in X. For the second term, for l = 0, there are K sequences,
with α(u)(0) = N for each u ∈ X. Hence, the LHS is bounded from above by
K(K−1)NΓ2 +KN2 +K(N−1)A2. On the other hand, the right hand side
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is bounded from below by K2N2 since the second term is always positive.
Hence,

K(K − 1)NΓ2 + KN2 + K(N − 1)A2 ≥ K2N2

=⇒ K(K − 1)NΓ2 + K(N − 1)A2 ≥ KN2(K − 1)

=⇒
(

Γ2

N

)
+

(N − 1)

N(K − 1)

(
A2

N

)
≥ 1.

Definition We say that a code is a complex sequence where each element
has norm 1.

Example Consider the family of codes of prime length L: U = {u(1), u(2), . . .},
where for all N , u(N) = {e 2πikN

L }L−1
k=0 . So, let’s calculate the constants Γ and

A.

α(u(N))(l) =
L−1∑
k=0

e
2πikN

L e
2πi(k+l)N

L

=
L−1∑
k=0

e
2πikN

L e−
2πi(k+l)N

L

=
L−1∑
k=0

e−
2πilN

L

= Le−
2πilN

L

Hence, A = L. As for Γ,

γ(u(N), u(M))(l) =
L−1∑
k=0

e
2πikN

L e
2πi(k+l)M

L

=
L−1∑
k=0

e
2πikN

L e−
2πi(k+l)M

L

=
L−1∑
k=0

e
2πi(kN−kM−lM)

L
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Since the codes are periodic with prime period L, we can work Modulo L.
Hence, as we vary k, kN − kM − lM eventually cycles through all of ZL.
Then, this sum is just the sum of the Lth roots of unity. Hence, they sat-
isfy the equation ωL = 1. From basic algebra, this sum is −aL−1

aL
, where

aL−1 and aL are the coefficients of the (L− 1)th and Lth terms of the poly-

nomial. Therefore,
∑L−1

k=0 e
2πi(kN−kM−lM)

L = 0. Hence, Γ = 0.

Lemma 2.3 Let X be a family of K codes of period N , as in Theorem 2.4,
s.t. A = N and Γ = 0. Then, K ≤ N

Proof Let A = N, Γ = 0. Then, by Sarwate’s Theorem, N−1
K−1

≥ 1. Hence,
N ≥ K.

Lemma 2.4 If a family of K codes, X, has the property that Γ = 0, then,
there exists a code u, such that α(u)(l) = N for some l, 0 < l ≤ L− 1.

Proof By Sarwate’s Theorem, if Γ = 0, A2 ≥ N2(N−1)
K−1

Now, if we represent
our codes as vectors ~vj, then we note that if Γ = 0, for any uj, uk (j 6= k),
〈uj , uk〉 = 0. Hence, all of the vectors are linearly independent. Therefore,
K ≤ N . Thus, we see that A2 ≥ N2. Hence, A ≥ N . But, we also know that
A ≤ N since the maximum autocorrelation occurs at zero-shift. Therefore,
A = N . Thus, ∃u ∈ X, l > 0, s.t. α(u)(l) = N .

3 Fourier Transforms

Fourier Transforms serve an important role in signal processing. A code
can be considered as a discretely sampled version of a signal of constant
amplitude. So, we can extend the use of Fourier Transforms to codes. So,
for discrete codes, we will make use of Discrete Fourier Transforms:

Definition Consider a complex periodic code of period N : {x0, x1, . . . , xN−1}.
We define the Discrete Fourier Transform as the complex periodic code of
period N : {χ0, χ1, . . . , χN−1}, where for each n = 0, 1, . . . N − 1,

χn =
1

N

N−1∑
k=0

xke
−2πikn

N .
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Proposition 3.1 Let C = {c0, c1, . . . , cN−1} be a complex periodic code of
prime length N . Let Ĉ = {ĉ0, ĉ1, . . . , ĉN−1} be the DFT of the code. Then,

α(Ĉ)(l) = 0

for all l = 1, . . . , N − 1.

Proof For each n = 0, 1, . . . , N − 1, ĉn = 1
N

∑N−1
k=0 cke

−2πikn
N . Hence,

α(Ĉ)(l) =
N−1∑
m=0

ĉmĉm+l

=
1

N2

N−1∑
m=0

(N−1∑
k=0

cke
−2πikm

N

)N−1∑
j=0

cje
−2πij(m+l)

N


=

1

N2

N−1∑
k=0

N−1∑
j=0

N−1∑
m=0

cke
−2πikm

N cje
−2πij(m+l)

N

=
1

N2

N−1∑
k=0

N−1∑
j=0

ckcj

N−1∑
m=0

e
2πi(jm+jl−km)

N

Note that for each j, k the third summation is just the sum of the N th roots of
unity as before since N is prime. Hence, it is 0. Therefore, α(Ĉ)(l) = 0.

We can extend the theory of discrete codes to the theory of continuous ones
(ie: L2(R), Cp, etc.). Here, we will make use of the continuous version of
the Fourier Transform extensively. Hence, we proceed to extend the discrete
results from Section 2 to continuous analogues.

The identity in Lemma 2.1 is true in the discrete case. But what happens
in the continuous case? We have a natural way of defining crosscorrelations
and autocorrelations for continuous signals (or functions), namely via the
convolution product. So, if f, g ∈ L2(R), we define the crosscorrelation of
two functions as:

(f ? g)(y) = (f ∗ g̃)(y) =

∫ +∞

−∞
f(x)g(y + x) dx
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and the autocorrelation as:

(f ? g)(y) = (f ∗ f̃)(y) =

∫ +∞

−∞
f(x)f(y + x) dx,

where for any function f , f̃(x) is defined as f̃(x) = f(−x).

We also define the Fourier Transform of a function as:

f̂(ξ) = F [f(x)] =

∫ +∞

−∞
f(x)e−2πixξ dx.

So, is it true that 〈f ? f , g ? g〉 = ‖f ? g‖2? The answer is yes.

Lemma 3.2 Assume that f, g are complex functions in L2(R). Then,

〈f ? f , g ? g〉 = ‖f ? g‖2,

where the inner products and norms are taken w.r.t. L2(R).

Proof The Fourier Transform is an isometry. So,

‖f ? g‖2 = 〈f̂ ? g, f̂ ? g〉

= 〈f̂ ˆ̃g , f̂ ˆ̃g〉 (by the Convolution Theorem)

First, we note that,

f̂(ξ) = 〈f(x) , e2πixξ〉
= 〈e−2πixξ , f(x)〉
= 〈f(x) , e−2πixξ〉

=

∫ +∞

−∞
f(x)e2πixξ dµ(x)

=

∫ +∞

−∞
f(−y)e2πi(−y)ξ dµ(y) (by changing variables x = −y)

= 〈f̃(y), e2πiyξ〉

= ̂̃f(ξ)
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Hence,
̂̃
f(ξ) = f̂(ξ).

=⇒ ‖f ? g‖2 =

∫ +∞

−∞
f̂(ξ)f̂(ξ)

̂̃
g(ξ)

̂̃
g(ξ) dµ(ξ)

=

∫ +∞

−∞
f̂(ξ)f̂(ξ)ĝ(ξ)ĝ(ξ) dµ(ξ)

= 〈f̂ f̂ , ĝĝ〉

= 〈f̂
ˆ̃
f , ĝˆ̃g〉

= 〈f̂ ∗ f̃ , ĝ ∗ g̃〉
= 〈f ? f , g ? g〉 (since the F. T. is an isometry).

Furthermore, assume that they

Now suppose instead of a function in L2(R), we have a function in L2([0, 1)).
Can we prove a comparable result? The answer is yes. All of the same
arguments apply as in the case of L2(R). The only thing we have to modify

is that we note that the map f 7→ f̂ (where f̂ is the Fourier expansion of f) is
an isometric isomorphism between L2([0, 1)) and l2(Z) by the Riesz-Fischer
Theorem. Then, we only require that the Fourier series of f and g converge
uniformly so that we can interchange the infinite sum and the integral, and
all of the previous arguments apply.

Continuing in extending our results from the previous section to spaces of
non-discrete functions, such as L2, we now ask if we can establish a bound
similar to the Sarwate one above. Define the following two numbers Ã and
Γ̃:

Ã = max {‖u ? u‖sup, u ∈ X}
Γ̃ = max {‖u ? v‖sup, u, v ∈ X, u 6= v}

The next Theorem gives such a result.

Theorem 3.3 Consider a family X ⊆ L2([0, 1)) of K continuous functions

s.t. for all u ∈ X, |
∫ 1

0
u(x) dµ(x)| = 1. Then,

Ã2

K
+ (K − 1)

Γ̃2

K
≥ 1.
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Proof ∑
u∈X

∑
v∈X

u 6=v

‖u ? v‖2 +
∑
u∈X

‖u ? u‖2

=
∑
u∈X

∑
v∈X

‖u ? v‖2

=
∑
u∈X

∑
v∈X

〈u ? u , v ? v〉

= 〈
∑
u∈X

u ? u ,
∑
v∈X

v ? v〉

= ‖
∑
u∈X

u ? u‖2

Now, as in Lemma 3.2, we note that,

(u ? u)(x) =
∑
k∈Z

|û(k)|2e2πikx, and û(0) =

∫ 1

0

u(x) dµ(x)

Hence,

‖
∑
u∈X

u ? u‖2 =
∑
u∈X

∑
v∈X

∑
k∈Z

|û(k)|2|v̂(k)|2

=
∑
u∈X

∑
v∈X

∑
k∈Z\0

|û(k)|2|v̂(k)|2 +
∑
u∈X

∑
v∈X

|û(0)|2|v̂(0)|2

= K2 +
∑
u∈X

∑
v∈X

∑
k∈Z\0

|û(k)|2|v̂(k)|2.

The left-hand side is bounded from above by KÃ2 + K(K − 1)Γ̃2 since

|f(x)| ≤ ‖f‖sup =⇒
∫ 1

0

|f(x)|2 dµ(x) ≤ ‖f(x)‖2
sup.

On the other hand, the right hand side is bounded from below by K2 since
the second term is always non-negative. Hence,

KÃ2 + K(K − 1)Γ̃2 ≥ K2 =⇒ Ã2

K
+ (K − 1)

Γ̃2

K
≥ 1.
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Remark We can easily make this into a more general result, where instead
of continuous functions we use any L2([0, 1)) functions and substitute the L2

norm for the sup norm.

4 Rudin-Shapiro Sequences

An area of coding theory where analytic methods are used extensively is
the study of codes generated by Generalized Rudin-Shapiro Systems. In our
study of these systems, we used George Benke’s 1994 paper of the same name
[2].

The classical Rudin-Shapiro polynomials are trigonometric polynomials de-
fined recursively as:

P0(x) = 1, Q0(x) = 1

Pn+1(x) = Pn(x) + e2πi2nxQn(x)

Qn+1(x) = Pn(x)− e2πi2nxQn(x).

Lemma 4.1 Let Pn(x) and Qn(x) be as above. Then, for any n ≥ 0, we
have:

|Pn+1(x)|2 + |Qn+1(x)|2 = 2(|Pn(x)|2 + |Qn(x)|2).

Proof

|Pn+2(x)|2 + |Qn+2(x)|2 =
∣∣∣Pn+1(x) + e2πi2n+1xQn+1(x)

∣∣∣2 +
∣∣∣Pn+1(x)− e2πi2n+1xQn+1(x)

∣∣∣2
= 2(|Pn+1(x)|2 + |Qn+1(x)|2)
+ e2πi2n+1xPn+1(x)Qn+1(x) + e−2πi2n+1xQn+1(x)Pn+1(x)

− e2πi2n+1xQn+1(x)Pn+1(x)− e−2πi2n+1xQn+1(x)Pn+1(x)

= 2(|Pn+1(x)|2 + |Qn+1(x)|2).

Lemma 4.2 For any n ≥ 0, we have:

|Pn(x)| ≤
√

2
√

N, and |Qn(x)| ≤
√

2
√

N

where N = 2n = ‖Pn(x)‖2
2 = ‖Qn(x)‖2

2.
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Proof

|Pn(x)|2 + |Qn(x)|2 = 2(|Pn−1(x)|2 + |Qn−1(x)|2) (by 4.1)

= 2 ∗ 2n−1(|P0(x)|2 + |Q0(x)|2) (applying 4.1 repeatedly)

But, |P0(x)|2 + |Q0(x)|2 = 2 Hence,

|Pn(x)|2 + |Qn(x)|2 = 2 ∗ 2n.

This means that |Pn(x)| ≤
√

2
√

N. The same holds true for Qn(x).

Alternatively, we can write this system in matrix-vector form. Let

Xn(x) =

(
Pn(x)
Qn(x)

)
U =

(
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

)
Dn(x) =

(
1 0
0 e2πi2nx

)
Hence, Equations (1), (2), and (3) become

Xn+1 =
√

2UDn(x)Xn(x).

This motivates the generalization of the construction. We begin to generalize
it by letting ε = {εn}, n = 1, 2, . . . , be an arbitrary sequence of 0’s and 1’s,

and letting F =

(
0 1
1 0

)
. Then, we define the sequence Xε,n+1 as:

Xε,n+1(x) =
√

2UDn(x)F εnXε,n(x).

So, if we consider all the possible choices for ε, at each stage n, we obtain
2n polynomials with 2n coefficients. So, we form a matrix, where for each
polynomial, there is a row of its coefficients. Hence, the first three matrices
of the construction are:(

1 1
1 −1

)
,


1 1 1 −1
1 1 −1 1
1 −1 1 1
1 −1 −1 −1

 ,

and



1 1 1 −1 1 1 −1 1
1 1 1 −1 −1 −1 1 −1
1 1 −1 1 1 1 1 −1
1 1 −1 1 −1 −1 −1 1
1 −1 1 1 1 −1 −1 −1
1 −1 1 1 −1 1 1 1
1 −1 −1 −1 1 −1 1 1
1 −1 −1 −1 −1 1 −1 −1


, respectively.
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It can be clearly seen that the rows are orthogonal. The first two rows are
the N th classical Rudin-Shapiro coefficients. We shall call this construction
the ”append” rule. It is so called since at each stage of the iteration, new
higher-order terms are added to the end of the polynomial. A related, but
different, construction is given by:

Xn+1(x) =
√

2UT (x)Xn(2x).

where

T (x) =

(
1 0
0 e2πix

)
.

This is called the interlace rule, since new terms are not added to the end,
but rather ”interlaced” in between the previous ones. As with the ”append”
construction, we can also consider the entire set of coefficient blocks generated
by all possible ε. As in, for each ε,

Xε,n+1(x) =
√

2UT (x)F εnXε,n(2x).

Now, we can generalize these constructions to arbitrary p×p matrices. Notice
that for the ”append” construction, for n = 1, the generating matrix was(

1 1
1 −1

)
. Now, we can have the system of polynomials be generated by

any p× p matrix, where p is prime.

So, how do we get at this generalization? Note that in the classical Rudin-

Shapiro Append rule, given the original matrix

(
a00 a01

a10 a11

)
, and two con-

secutive rows Ri, Rj, we form four new rows for the next iteration:

(a00Ri a01Rj) , (a10Ri a11Rj) ,

(a00Rj a01Ri) , and (a10Rj a11Ri) .

Note how the rows of the previous matrix are cyclically permuted in the con-
struction, and the entries of the original matrix appear as coefficients in the
new one. Thus, generalizing this construction to the p× p case, we see that
expressing the row and column indeces in a base-p representation vector is
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most convenient. Hence, letting ~ω, ~ν ∈ Zn
p and ~p = {1, p, . . . , pn−1}, the gen-

eralized Append and Interlace polynomials (An,ν(x) and In,ν(x), respectively)
are given by:

An,ν(x) =
∑
ω∈Zn

p

aν0,ωn−1

(
n−1∏
k=1

aνn−k+ωk,ωk−1

)
e2πi<~p,~ω>x

In,ν(x) =
∑
ω∈Zn

p

aν0,ω0

(
n−1∏
k=1

aνk+ωk−1,ωk

)
e2πi<~p,~ω>x,

where all subscript addition is computed modulo p.

These generalized Rudin-Shapiro systems have interesting applications to
coding theory. One could construct a code using the coefficients of the
trigonometric polynomial. How good are these codes, especially in terms
of the Sarwate bound proven earlier? First, we change notation slightly and
say that ~ν ∈ Zpn

p is now a code given by the coefficients of the polynomial
An,~ν(x).

Lemma 4.3 Let n ≥ 1 and p ≥ 2. Let A(n) = A
pn , Γ(n) = Γ

pn at the nth

stage of the process. Also, say that A =
√

βU for some unitary matrix U .
Then, for each n,

A(n) ≤ (β/p)n and Γ(n) ≤ (β/p)n.

Proof For each l ≥ 1, α(u)(l) ≤ α(u)(0) since the autocorrelation function

peaks at zero-shift. Now note that for each code ~ν, α(~ν)(0) =
∫ 1

0
|An,~ν(x)|2 dx =

βn by Theorem 5 in [2]. Hence,

A(n) =
A

pn
≤

max {α(~ν)(0), ~ν ∈ Zpn

p }
pn

=

(
β

p

)n

Now, for Γ, observe that if we represent our sequences, ~ν, ~ν ′ as vectors, we
can write

γ(~ν, ~ν ′)(l) = 〈~ν, Sl~ν
′〉,

where Sl is the linear transformation that shifts a vector cyclically by l places.
Since Sl ∈ Sym(pn), it is an isometry of Rpn

. Hence,

|γ(~ν, ~ν ′)(l)| ≤ ‖~ν‖ ‖Sl~ν
′‖ = ‖~ν‖ ‖~ν ′‖ = ‖An,~ν‖2 ‖An,~ν′‖2
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But, by Theorem 5 in [2],

‖An,~ν‖2 ‖An,~ν′‖2 = βn.

Hence, Γ(n) = Γ
pn ≤

(
β
p

)n

.

Lemma 4.4 Let A =
√

βU, for some unitary matrix U and constant β. Let
~ν be the code given by the coefficients of the Append polynomial, An,~ν(x).
Then, the Discrete Fourier Transform of ~ν is given by:

~̂ν = { 1

pn
An,~ν(0),

1

pn
An,~ν(

−1

pn
), . . . ,

1

pn
An,~ν(

1− pn

pn
)}

.

Proof By the definition of the DFT, if ~ν = {ν0, ν1, . . . , νpn−1}, then

~̂ν = {χ0, χ1, . . . , χpn−1},

where for each m,

χm =
1

pn

pn−1∑
k=0

νke
−2πikm

pn .

But, note that for each m this sum is just the Append polynomial evaluated
at x = −m/pn since the coefficients νk are just the coefficients of An,~ν(x)
taken in the same order. Hence,

~̂ν = { 1

pn
An,~ν(0),

1

pn
An,~ν(

−1

pn
), . . . ,

1

pn
An,~ν(

1− pn

pn
)}.

Lemma 4.5 Let ~ν be as above. Then, for each m = 0, 1, . . . , pn − 1,

|χm| ≤
√

p

(√
β

p

)n

.

Proof By Corollary 4 in [2], for all x, |An,~ν(x)| ≤ √
p
(√

β
)n

. Substituting
into the above, we see that for all m,

|χm| =
1

pn
|An,~ν(

−m

pn
)| ≤ 1

pn

√
p
(√

β
)n

=
√

p

(√
β

p

)n
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Theorem 4.6 Say that f is a function in L2((0, 1]), such that for all k,
∃C > 0, a > 1 such that

|f̂(k)| ≤ C

an
,

where f̂(k) is the k-th Fourier coefficient. Furthermore, assume that the
Fourier series has no more than pn terms, where p is some prime. Then,
‖f ? f‖1 → 0 as n →∞.

Proof Say the Fourier series of f has pn terms. f ? f =
∑pn

k=1 |f̂(k)|2e2πikx,
as before. Then, we have that

f ? f ≤ sup
k≤pn

|f̂(k)|2
pn∑

k=1

e2πikx

≤ C

an
Dpn(x),

where Dpn(x) is the Dirichlet kernel. From standard Fourier Analysis, we
know that ‖Dpn(x)‖1 = 4

π2 log pn + O(1) (consult [4] for a complete proof).
Hence,

‖f ? f‖1 ≤ C

an
(n log p + O(1))

→ 0 + 0 = 0

as n →∞.

The above theorem has important consequences for us. Note that for any
code ~ν that satisfies the hypotheses of 4.4, we can see that for each k, the
k-th Fourier coefficient of the periodic autocorrelation function α(~ν) is given
by |χk|2 where χk is the k-th Fourier coefficient of our code. Now, taking
the Inverse DFT of the DFT of the autocorrelation function, we can recover
the autocorrelation function itself. But, notice that we can use an argument
similar to the one in the preceding theorem to get a bound on the IDFT.
Hence, we see that with binary codes given by the classical RS construction
as n →∞, α(ν)(l) → 0 for all l ≤ 2n.
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